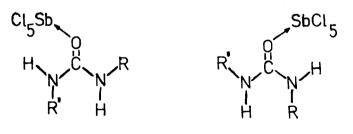
NMR STUDY OF THE ADDUCTS OF BF3 AND SbC15 WITH ¹⁵N-LABELED 1,3-DIMETHYLUREA.

Peter Stilbs

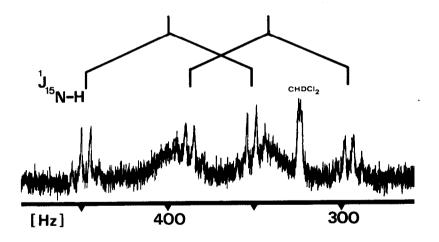
Division of Physical Chemistry, The Lund Institute of Technology, Chemical Center, S-220 07 Lund, Sweden


(Received in UK 30 November 1971; accepted for publication 17 December, 1971)

The question of 0- <u>versus</u> N-coordination in Lewis acid adducts of amides and alkyl substituted ureas has been the subject of several NMR investigations during the last decade. (See e.g. Ref. 1 and references therein.) The observation of increased proton-proton coupling constants across the C-N bond upon adduct formation and slow rotation at room temperature in e.g. $DMF \cdot BF_3^{2,6}$, $DMF \cdot BCl_3^{2,3,6}$, $DMF \cdot SbCl_5^{5,6}$ and $DMA \cdot SbCl_5^{4}$ is inconsistent with N-coordination.

0-coordination was also found in lactams,⁷ and an X-ray investigation of DMF·SbCl₅⁸ showed 0-coordination in the solid state.

In the case of alkyl substituted ureas evidence, mostly based on chemical reactions, suggested N-coordination in the boron trihalide⁹ and PCl_5^{10} adducts.


In a recent variable temperature PMR study of SbCl₅-N,N⁻-dialkylurea adducts a restricted exchange between two conformations was detected below room temperature.¹¹ The exchange was considered to be due to restricted rotation around, the C-N bonds coupled with SbCl₅ exchange between two bonding positions at the carbonyl oxygen:

227

 $SbCl_5$ -exchange between the two nitrogen atoms is a less likely possibility, although it could not be completely ruled out. In order to investigate this further the present PMR study of ^{15}N -labeled 1,3-dimethylurea ($CH_3^{14}NHC0^{15}NHCH_3$) adducts was undertaken. It is known that direct ^{15}N -H couplings are dependent on the state of nitrogen hybridization 12,13 and will therefore give direct information about the bonding site in the adducts.

<u>Results and discussion</u>. Both adducts show the same type of methyl PMR as previously described for the $SbCl_5$ adduct¹¹, with two methyl signals below 0°. The NH region of the slow exchange PMR spectrum of the ¹⁵N-labeled SbCl₅ adduct is shown in fig. 1 and the results are summarized in table 1. Direct ¹⁵N-H couplings of the order of 90-100 Hz (sp²-hybridized nitrogens) were observed for both slow exchange signals. Furthermore the two PMR signals from the ¹⁴NHprotons were found to be of the same width, which indicates equal electric field gradients at nitrogen in both sites. The BF₃ adduct gave essentially the same results.

<u>Fig.1</u> The NH region of the 60 MHz PMR spectrum of the ¹⁵N-labeled adduct of SbCl₅ and 1,3-dimethylurea at -20°. The 1:3:3:1 structure of the signals arises from spin-spin coupling with the methyl groups (${}^{3}J_{HH} \simeq 5$ Hz) and the broad signals are due to 14 NH protons. The scale is recalculated to TMS as reference by taking the shift of CHDCl₂ to be 323 Hz.

No	•	3

Table 1.

PMR parameters	in	Hz	at	60	MHz	for	the	NH	PMR	signals	with	estimated	error	limits

Acceptor	¹ J _{15N-H} (low field)	¹ J ₁₅ (high field) N-H	Separation
SbCl ₅ (-20°)	96.5 ± 0.5	92.0 ± 0.5	57 ± 1
BF ₃ (-35 [°])	98.0 ± 1.5	92.0 ± 1.5	46 ± 3

The observations are consistent with 0-coordination but not with N-coordination, as the latter should lead to one sp²- and one sp³-type nitrogen (\simeq 95 and \simeq 75 Hz ¹⁵N-H couplings, respectively), as well as different field gradients at the ¹⁴N atom in the two conformers.

Experimental. The BF_3 adduct was prepared in a high vacuum line by standard methods to give an approximately 0.25 M CD_2Cl_2 solution. Solubility problems occured at low temperatures even at this concentration. BF_3 was repeatedly condensed onto solid NaF <u>in vacuo</u> to remove HF.¹⁴ The <u>SbCl_5</u> adduct was prepared as previously described¹¹ in a polyethylene glove bag (Instruments for Research and Industry) in a nitrogen atmosphere to give a 0.4 M CD_2Cl_2 solution. In both cases the donor-acceptor ratio was close to 1. Spectra were recorded immediately and after one weeks' storage in a refrigerator without significant changes. Acknowledgements. The author is indebted to Dr. G. Olofsson and Professor Sture Forsén for stimulating discussions and valuable comments on the manuscript and to Dr. R.E. Carter for helpful linguistic criticism.

A maintenance grant from <u>The Bengt Lundqvist Memorial Foundation</u> is gratefully acknowledged.

References.

1.	W.E. Stewart and T.H. Siddall, III <u>Chem. Rev.</u> <u>70</u> , 517 (1970)
2.	E.S. Gore, D.J. Blears and S.S. Danyluk <u>Can. J. Chem. 43</u> , 2135 (1965)
3.	W. Gerrard, M.F. Lappert, H. Pyszora and J.W. Wallis J. Chem. Soc. 2144 (1960)
4.	Q. Appleton, L. Bernander and G. Olofsson <u>Tetrahedron</u> , in press
5.	A. Fratiello, R. Schuster and D.P. Miller <u>Mol. Phys. <u>11</u>, 597 (1966)</u>
6.	S.J. Kuhn and J.S. McIntyre <u>Can. J. Chem.</u> 별길, 375 (1965)
7.	E.F.J. Duynstee, W. Van Raayen, J. Smidt and T.A. Verkamp Recl. Trav. Chim. Pays-Bas 80, 1323 (1961)
8.	L. Brun and C.I. Brändén <u>Acta Cryst.</u> <u>20</u> , 749 (1966)
9.	N.N. Greenwood and B.H. Robinson <u>J. Chem. Soc. A</u> 511 (1967)
10.	H. Ulrich and A.A.R. Sayigh <u>J. Org. Chem. 30</u> , 2779 (1965)
11.	G. Olofsson, P. Stilbs, T. Drakenberg and S. Forsén <u>Tetrahedron</u> <u>27</u> , 4583 (1971)
12.	G. Binsch, J.B. Lambert, B.W. Roberts and J.D. Roberts J. Amer: Chem. Soc. $\underline{36}$, 5564 (1964)
13.	A.J.R. Bourn and E.W. Randall <u>Mol. Phys.</u> <u>8</u> , 567 (1964)
14.	R.E. Dodd and P.L. Robinson "Experimental Inorganic Chemistry", p. 203 Elsevier Publishing Company, Amsterdam (1957)